Güneş Sistemi - Güneş Döngüsü

zeberus1234

Yeni Üye
Tepkime
10
Yaş
36
Coin
2
ışıkküre nedir - Güneş döngüsü nedir - Güneş gözlemleri - Güneş ışığı bilgi - Güneş Hakkında genel Bilgiler - güneş tutulması - Güneş Sistemi Hakkında İlginç Bilgiler





G üneş'in görünen yüzeyine ışıkküre
Güneş'in görünen parlak yüzeyine ışıkküre denir. Teleskopla dikkatle gözlendiğinde, ışıkkürenin bulgurcuk (gra-nül) denen benekli bir yapıya sahip olduğu görülür. Güneş enerjisinin çoğu ışıkküre tarafından salınır. Işıkküre yaklaşık 400 km kalınlığında, seyrek ama oldukça donuk bir katmandır. Sıcaklığı alt kısmında 10.000 K kadardır, üst kısmında bu değer 4.200 K'ye kadar düşer. Yoğunluğu, deniz düzeyindeki hava yoğunluğunun binde biri kadardır. Bulgurlanma. Güneş'in yüzeyini, her biri sıcak bi
fotosfer) denir. Bunun üzerinde, renkküre


kromosfer) adını alan 5.000 km kalınlığında bir iç atmosfer vardır. Bunun da üzerinde, son derece yüksek sıcaklıktı Güneş tacı (korona) bulunur. Güneş tacı,

Yer'e hatta daha ötelere kadar uzanır. Güneş, bir magnetik alana sahip olan, dönen ve çekirdeğinde enerji üreten bir gökcismidir. İç bölümlerinde üretilen enerjinin yüzeye taşınmasının, magnetik alanın yüzeyde yol açtığı gelişmelerin ve dönme hareketinin etkisiyle son derece karmaşık hale gelen Güneş olaylarının incelenmesi, modern Güneş astronomisinin başlıca konulan arasındadır.


Güneş, yüzyıllar boyunca tapınılan bir varlık olmuş ve bu nedenle fiziksel özellikleri pek incelenmemiştir.
Dünya’nın yörüngesinde herhangi bir olağandışılık yok. Dünya’nın Güneş’ten ortalama uzaklığı 149.597.000 kilometre; Güneş etrafında dolanım süresi 3651/4 gün; yörüngesel hızı saniyede ortalama 29,8 kilometre, yani saatte 107.000 kilometredir. Dünya’nın Güneş etrafında izlediği yol kusursuz bir daire değildir; Ocak’ta günberi, Temmuz’da günöte noktalarına ulaşırız.

Atinalı filozof
Atina, (Yunanca: Αθήνα) Yunanistan'ın başkenti ve yaklaşık 4 milyon kişilik nüfusuyla en büyük şehridir.

Anaksagoras İÖ 467 dolaylarında Aigos-Potamorye düşen büyük bir göktaşının Güneş'ten geldiğini ileri sürdü. Bundan kalkarak da Güneş'in Peloponne-sos'tan daha büyük, kızgın demirden oluşan bir cisim olduğu sonucuna vardı. Teleskopun keşfini izleyen yıllarda Galileo Galilei, Johannes Fabricius,
Yunan Filozof. MÖ 462 de yurdu olan Anadolu'dan Atina'ya göçtü. Anaksagoras tam anlamıyla bir akılcıydı. Ona göre yeryüzünü oluşturan süreç neyse,diğer gök cisimlerini oluşturan da oydu. Bu nedenle yeryüzü ile gökteki diğer cisimler aynı maddeden yapılmıştı.
.
Christoph Scheiner ve
Alman astronomu ve matematikçisi (Wald, Schwaben 1575-Neisse, Silezya 1650). 1595'te Cizvit tarikatına girdi, İngolstadt üniversitesinde, İnnsbruck ve Freiburg-im-Breisgau'da matematik okuttu. Okülerli ve dışbükey objektifli astronomi dürbününü onun yaptığı sanılır. Bu araçta, görüntü düzeltilmiş, görüş alanı büyümüş ve gözlem daha elverişli hale gelmiştir.

Scheiner, 1611'de İngolstadt'ta, Galileo'nun kendisinden önce bulduğundan habersiz olarak, güneş lekelerini gözlemledi. Uzun zaman renkli

Thomas Harriot, aynı yıllarda Güneş lekelerini buldular (1610-11). İki yüzyıl sonra,
1610 yılı olayları, ölümler, doğumlar ve diğer önemli gelişmeler

1843'te Alman amatör astronom Samuel Heinrich Schwabe, 33 yıl boyunca sürdürdüğü çok dikkatli gözlemlere dayanarak, Güneş lekelerinin sayısının 10 yıllık bir dönem içinde değiştiğini ortaya koydu.

1852'de bu çevrimin 11,2 yıl olduğu ve ayrıca 80 yıllık bir başka dönemin de bulunduğu anlaşıldı.


1858'de, yeni çevrimin başlangıcında ilk lekelerin ±30° enlemlerin çevresinde ortaya çıktığı ve çevrim ilerledikçe lekelerin giderek Güneş ekvatoruna doğru kaydığı ve ±8° enlemleri çevresinde toplandığı gözlendi.


1834'te Alman matematikçi ve astronom


Carl Friedrich Gauss, magnetik olguların gözlenmesine yönelik ilk gözlemevini Göt-tingen'de kurdu. Bunu başkaları izledi.
Fakir bir Alman ailenin çocuğu olan ve "Matematiğin Prensi" olarak anılan Gauss'un (1777-1855) dehası çok erken yaşlarda kendini göstermiş ve konuşmayı öğrenmeden önce toplama ve çıkarma yapmayı öğrenmiştir. Güç koşullar altında sürdürdüğü eğitimini, 14 yaşındayken bir asilin sağladığı destekle güvence altına alabilmiştir. 16 yaşında Eukleides Geometrisi'nin alternatifi olacak yeni bir geometri tasarlamış ve 18 yaşındayken Lagrange ve Newton'un eserlerini incelemiştir.

1857'de, küçük günlük magnetik değişimlerin Güneş çevrimi ile ilintili olduğu gösterildi.


1904'te, şiddetli magnetik fırtınaların, büyük leke gruplarının merkezî meridyenden geçişiyle ilintili olduğu bulundu.

Tam güneş tutulması sırasında güneş koronası çıplak gözle görüebilir.

Yeni teleskopların ve çok ileri tekniklerin kullanıldığı yardımcı donanımlarla Güneş astronomisinde çok önemli gelişmeler sağlandı. Güneş lekelerinin fiziksel ve kimyasal yapısının anlaşılması spektroskopinin gelişmesinden sonra olanaklı oldu.


1870'te,1870 yılı olayları, ölümler, doğumlar ve diğer önemli gelişmeler

Güneş lekelerinden salman ışınımın tayfında, molekül halinde bileşiklerin bulunduğunu gösteren karanlık bantlar keşfedildi. Daha sonra, bazı çizgilerin genişlemesinin, dara-larak keskinleşmesinin ye bazı karanlık çizgilerin tümüyle parlak çizgi durumuna gelmesinin, Güneş lekelerinin çevresindeki gazların parlamasından (bugün püskürtü olarak adlandırılır) kaynaklandığı ileri sürüldü. Spektroskopik incelemeler sonucunda 1909'da, lekelerin daha soğuk ve karanlık olan merkezinden (gölge) dış kısımlara (yarıgölge) doğru, saatte 2 km hızında bir gaz akımının bulunduğu belirlendi. 1913'te, lekelerin üstündeki atmosferin yüksek katmanlarından, leke merkezine doğru, tersine bir akımın varlığı saptandı. Spektrohelyo-grafın (güneş tayfçekeri) 189İ'de George Ellery Hale tarafından bulunuşu, Güneş'in hidrojen, kalsiyum ve öteki elementlerin iyon ve atomlarından salınan ışıkta incelenmesini olanaklı kıldı, böylece renkküreye ilişkin ayrıntılı bilgiler elde edildi. 1908'de Hale, Güneş lekelerinin magnetik niteliğini ortaya koymak amacıyla leke tayfındaki bazı atomlara ait çizgilerde yarılma ve kutuplanma olup olmadığını (Zeeman etkisi) araştırdı. Bunun için, Wilson Dağı Gözlemevi'nde büyük kule teleskoplar kuruldu, bunların zeminlerine spektroskoplar yerleştirildi. 1914-24 arasında Hale, güneş lekelerinde magnetik kutupların tersine dönmesi konusundaki yasaları geliştirdi. Hale Güneş'in genel magnetik alanını ölçmeye de niyetlendi, ama bu konudaki güvenilir ölçümler ancak
Güneş lekeleri, Güneş'in yüzeyinde (ışıkyuvarda), çevresine oranla daha düşük sıcaklığa sahip olan, ve mıknatıssal etkinliğin gözlemlendiği bölgelerdir. Her ne kadar 4000-4500 Kelvin|K sıcaklık ile son derece parlak olsalar da, çevrelerinin 5778 K'de olması, karanlık bölgeler olarak görülmelerine neden olur.



1948'de fotoelektrik magnetografın bulunmasından sonra gerçekleştirilebildi.


Tam güneş tutulması sırasında güneş koronası çıplak gözle görüebilir

Alman fizikçi


Joseph von Fraunhofer, kendi yapımı çok geliştirilmiş bir spektroskopla Güneş tayfındaki karanlık çizgilerden 574 tanesini görsel olarak belirledi; bu çizgilerin çok belirgin olanlarını, bugün hâlâ çizgi tanısında kullanılan bir sistemle, A,a,B,C,D gibi harflerle gösterdi. Günümüzde Fraunhofer çizgileri olarak bilinen bu karanlık çizgilerin fiziksel anlamı, 1859'da Alman fizikçi Gustav Robert Kir-chhoff tarafından açıklandı. Kirchhoff, sıcak Güneş'i çevreleyen, kendisinin "çevirici katmanlar" olarak adlandırdığı ve tayftaki karanlık çizgileri oluşturduğu sanılan daha soğuk buhar katmanlarının bulunduğunu ileri sürdü. Laboratuvarda elde edilen tayflarla Güneş ışığı tayfının karşılaştırılması sonucunda, Güneş'te sekiz elementin varlığı saptandı. ABD'li fizikçi Henry Augustus Rowland, 1897'de 12 metre boyunda çok yüksek nitelikli bir Güneş tayfı fotoğrafı yayımladı. Bu tayf aracılığıyla, Güneş'te 39 kimyasal elementin varlığı kanıtlandı. Yer atmosferindeki ozonun soğurma etkisi nedeniyle, Rovvland'ın tayfı ancak morötesine kadar uzanabiliyordu. Bu sınır, atmosfer dışında (uzayda) gözlem yapılmasının olanaklı duruma gelmesiyle aşıldı. Günümüzde Güneş tayfı görünür ışık bölgesinden 1 ângströmden (A, 10~10 m) daha küçük dal-gaboylarına kadar elde edilmiştir. Kırmızıya doğru ise, 1888'de Güneş tayfı 53.000 A'ya kadar elde edilmişti. Yeni algılayıcılarla bu sınır, yalnızca Yer atmosferinin 25 mikrometreden büyük kızılötesi tayfını engelleyen su buharı kuşaklarıyla belirlenmektedir. Tayfın tümü, su buharı ve ozon soğurmalarından etkilenmeyecek kadar vükseâe çıkıldığında gözlenebilir.


Güneş sıcaklığı. Güneş'in sıcaklığının belirlenmesi Güneş astronomisindeki en güç problemlerden biridir. İngiliz astronom Sir John Herschel Güney Afrika'da ve 1837'de Fransız fizikçi Claude-Servais-Mathias Pouil-let Fransa'da Güneş ışınlarının dik gelmesi ve tümünün soğurulması durumunda 1,8 cm derinliğindeki bir su katmanının sıcaklığını dakikada TC yükselttiğini gözlediler. Ölçüm tekniği ilke olarak çok kolaydı, ama atmosfer soğurması bilinmeyen bir faktör olarak kalıyordu. Son zamanlarda, balon ve uçak gözlemleri sonucu, dakikada 1,9b cal/cm2'lik bir güneş sabiti değeri bulundu. Güneş sabiti, Yer atmosferi dışında, ortalama Güneş-Yer uzaklığında, birim alana gelen toplam Güneş ışımasıdır.

Güneş, X ışınlarından radyo dalgalarına kadar her dalgaboyunda enerji yayınlar. Bu enerjinin yaklaşık yüzde 4O'ı tayfın görünür bölgesinde, yüzde 50'si kızılötesi bölgesinde, kalanı da morötesi bölgesinde salınır. Güneş'in yüzeyinden uzaya kaçan ışınım, Güneş atmosferinin farklı derinlikteki ve sıcaklıktaki bölgelerinden gelir. Dış yüzeyde sıcaklık 4.200 K kadardır ama çıplak gözle bakıldığında sıcaklığın 10.000 K olduğu derinlikler görülebilir. Güneş'in etkin sıcaklığı, bir başka deyişle, Güneş'in saldığı enerjiye eşit enerji salan küresel bir kara cismin (bak. kara cisim) sıcaklığı da belirlenmiş, Stefan-Boltzmann yasalarından hareketle bu sıcaklığın 5.740 K olduğu hesaplanmıştır. Tayfın farklı bölgelerinde de farklı renk sıcaklıkları bulunmuştur. Görünür ışık bölgesinin tümü için 6.000 K'lik bir renk sıcaklığı uygun düşmektedir.

Güneş'ten salınan çok büyük miktardaki enerjinin tanımlanması pek kolay değildir. Bir örnek vermek gerekirse; eğer Güneş 12 m kalınlığında bir buz katmanıyla sarmalanmış olsaydı, bunu eritmesi için bir dakika yeterli olacaktı. Yeryüzüne ulaşan Güneş enerjisi km2 başına 1,5 milyon BG dolayındadır. Bu çok büyük enerjiyi yararlanılabilir duruma getirmekte önemli güçlükleüe karşılaşılır. Yüksek sıcaklıklar elde etmek amacıyla büyük parabolik toplayıcılar kullanmak gerekmektedir.

Güneş'ten gelen radyo dalgaları ilk kez 1942'de ingiliz radar istasyonlannca belirlendi. Bunun, Güneş'in yüzeyinde görülen etkin bir lekeyle, özellikle de 28 Şubat'ta gerçekleşen büyük püskürmeyle ilintili olduğu ileri sürüldü. Aynı yıl, Güneş lekeleri ve bunlarla ilintili etkinliklerin en az olduğu "sakin Güneş" döneminde de zayıf bir radyo yayını belirlendi. Enerjinin Güneş'in iç bölümlerinde üretildiğine ilişkin modern görüş, Sir Arthur Stanley Eddington'la başladı. Eddington, Güneş sisteminin tahmin edilen ömrü boyunca, Güneş'ten dışarıya sürekli olarak gönderilen enerjinin ancak çekirdek tepkimeleriyle karşılanabileceğini ileri sürdü. Hidrojenin helyuma dönüştüğü çekirdek tepkimeleri sonucunda açığa çıkacak enerji miktarı 1937-38 yıllarında ayrıntılı olarak hesaplandı.
Güneş Ne Kadar Sıcaktır?
Güneş, Güneş Sistemi'ndeki en büyük gök cismidir. Çok sıcak ve yanmakta olan bazı gazlardan oluşur. Bu nedenle, yüzeyinde her saniyede milyonlarca atom bombası patlamasına eşit güçte patlamalar olur. Bu patlamalarda boyu Dünyamız'ın büyüklüğünün 40-50 katı olan alevler fışkırır.



Günes patlamasi

Ateşten bir topa benzeyen Güneş, yüzeyinden çok büyük bir ısı ve ışık yayar. Eğer, Güneş olmasaydı, her zaman gece olurdu ve her yer buzla kaplı olurdu. En önemlisi Dünya'da yaşam yani biz olamazdık. Güneş'in sıcaklığı derece 6000 dış yüzeyinde, içindeki sıcaklık ise 12 milyon derece dir.

Güneşe Genel bakış
Güneş

Öbek I, ya da üçüncü nesil yıldızlardandır. Oluşumu yakınlarında bulunan bir
Gökbilim ve doğabilimsel evrenbilimde, bir nesnenin metalliği, özdeğinin hidrojen ve helyum dışında içerdiği kimsayal öğelerin oranıdır. Evrenin en büyük ölçekteki nesnelerinin ezici oranda bu iki öğeyi içermesi nedeniyle, gökbilimciler onlardan daha ağır her öğeyi "metal" olarak belirtmektedirler. Örneğin karbon zengini bir bulutsu bile, her ne kadar karbon metal olmasa da, bu koşullarda "metal zengini" olarak belirtilmektedir.

süpernovanın şok dalgaları ile tetiklenmiştir.
Milattan sonra 1054 yılının 4 Temmuz gecesi, Çin İmparatorluğu'nun astronomları, gökyüzünde çok dikkat çekici bir olayın gerçekleştiğini gözlemlediler. Gökyüzündeki boğa burcunun yakınlarında, aniden çok parlak bir yıldız ortaya çıktı. Yıldız o kadar parlaktı ki, ışığı gündüzleri bile kolaylıkla farkedilebiliyor, gece ise neredeyse

Altın ve
Alm. Gold (n), Fr. Or (n), İng. Gold. Kimyada Au sembolü ile gösterilen yumuşak, parlak sarı renkte metalik bir element. Atom numarası 79, atom ağırlığı 196,967, erime noktası 1063°C, kaynama noktası 2966°C ve 20°C’de özgül ağırlığı 19,3 g/cm3tür.
...Tümünü okumak için linke tıklayınız.
uranyum gibi ağır metallerin Güneş Sistemi içinde yaygın olarak bulunması bunu desteklemektedir. Bu elementler büyük olasılıkla süpernova sırasında endergonik nükleer reaksiyonlar esnasında ya da ikinci nesil büyük bir yıldızın içinde
Periyodik tablonun III B grubundaki aktinitler serisinde yer alan radyoaktif kimyâsal element. Yoğun, sert ve gümüş beyazı renginde bir metal olan uranyum tabiî elementler arasında atom ağırlığı en yüksek olanıdır. Kimyâda “U” sembolüyle gösterilir. 1789’da M. H. Klaproth tarafından keşfedilen uranyum E.M. P
ligot tarafından 1841 yılında uranyum-4-oksitten (UO2) izole edildi. 1896’da Henri Bucquerel uranyumun radyoaktif bir element olduğunu keşfetti. 1934’te Fermi ve çalışma
nötron emilimi yoluyla dönüşerek oluşmuştur.

Günışığı Dünya'nın ana enerji kaynağıdır. Güneş değişmezi, Güneş'in yeryüzünde doğrudan günışığına maruz kalan birim alana bıraktığı güç miktarıdır. Güneş'ten 1 gökbirimi (GB) ötede Güneş değişmezi yaklaşık olarak metrekareye 1.370
Nötron Alm. Neutron (n), Fr. Neutron (m), İng. Neutron. Bütün atomların çekirdeğini meydana getiren iki temel tanecikten biri. Bu iki temel tanecikten proton artı yüklü olduğu halde, nötron yüksüzdür. Hidrojenin dışında, bütün elementlerin çekirdeğinde nötron ve proton bulunur. Bir elementin çekirdeğinin nötron sayısı, ya protona eşit veya proton sayısından fazladır. 1920 yılında Rutherford ve 1931'de Heisenberg nötrondan bahsetmişlerdir.Günışığının atmosferden geçerken gücünün zayıflaması sayesinde, güneş tepe noktasındayken ve hava açıkken yeryüzüne düşen güç miktarı daha düşüktür ve metrekareye 1.000 watt civarındadır. Bu enerji doğal ve yapay çeşitli yöntemlerle toplanabilir. Bitkiler
Watt fizikte güç birimi. Mekanikte, sâniyede bir joulelik (jül) iş yapan makinanın gücü bir Wattır.

fotosentez yoluyla günışığını yakalar ve oksijen ile indirgenmiş karbon bileşikleri olarak kimyasal enerjiye çevirir.
Fotosentez yeşil bitkilerin ışıkta, çok basit bileşiklerden (karbondioksit, su, nitratlar) karmaşık yapılı organik moleküller (protitler, glüsitler, lipitler) yapması. Güneş'ten gelerek üzerinde yaşadığımız gezegene çarpan ışık enerjisinin bir kısmı yansır (Mars'tan bakılsa Dünya da aydınlık görünür), bir kısmı emilir, ısıya dönüşür, bir kısmı da suyu buharlaştırmaya yarar (bulutların oluşu). Yalnız bu enerjinin klorofilli bitkilerin üzerine (meselâ ağaçların yapraklarına) düşen çok küçük

Güneş enerjisi kullanan ekipmanlar doğrudan ısıtma ya da
Güneş Enerjisi Alm. Sonnenenergie (f), Fr. Energie (f) solaire, İng. Solar energy. Güneşten elde edilen enerji. Güneş enerjisi, son yıllarda yenilenebilen enerji kaynakları içinde, üzerinde en çok çalışılanı olmuştur. Güneş, dünyamıza ve diğer gezegenlere enerji veren büyük bir enerji kaynağıdır. Bitkiler, canlı doku üretmek ve besin yapabilmek (fotosentez) için güneş enerjisinden faydalanır. Rüzgar, güneş ışınlarının sıcaklık farkı hasıl etmesinden meyd

güneş pili yardımıyla elektrik üretmeye ya da diğer işleri yapmaya yardımcı olur.


Petrol ve diğer fosil yakıtlar içinde bulunan enerji çok eskilerde günışığından
Petrol sözcüğü, Yunanca-Latince’de taş anlamına gelen "petra" ile yağ anlamına gelen "oleum" sözcüklerinden oluşmuştur. Her dilde aynı anlamı taşımaz. Petrol deyince, yalnız belirli bir yakıtı Benzin, Gazyağı, Dizel(motorin), Motor yağı, Fuel oil değil, Doğal halde bulunan ve yeraltından çıkarılan HAM PETROL’Ü kastediyoruz. Petrol bir takım hidro karbonların karışımından meydana gelmiş olup, muayyen bir kimyevi bileşimi yoktur fotosentez yoluyla çevrilmiştir.


Fotosentez yeşil bitkilerin ışıkta, çok basit bileşiklerden (karbondioksit, su, nitratlar) karmaşık yapılı organik moleküller (protitler, glüsitler, lipitler) yapması. Güneş'ten gelerek üzerinde yaşadığımız gezegene çarpan ışık enerjisinin bir kısmı yansır (Mars'tan bakılsa Dünya da aydınlık görünür), bir kısmı emilir, ısıya dönüşür, bir kısmı da suyu buharlaştırmaya yarar (bulutların oluşu). Yalnız bu enerjinin klorofilli bitkilerin üzerine (meselâ ağaçların yapraklarına) düşen çok küçük

morötesi ışık
Elektromenyetik ışınım, dalgaboyuna göre çeşitli sınıflara ayrılır. Bunlar, en uzun dalgaboyundan en kısasına doğru radyo, mikrodalga, kızılötesi, görünür, morötesi X-ışını ve gama ışınımlarıdır. Dalgaboyu arttıkça, ışınımın enerjisi de artar.

antiseptik özelliklere sahiptir ve âletlerle suyu dezenfekte etmek için kullanılabilir. Aynı zamanda güneş yanığına neden olur ve D vitamini üretilmesi gibi diğer tıbbi etkileri de bulunur. Morötesi ışık Dünya'nın ozon tabakası tarafından oldukça kuvvetli şekilde soğurulur. Dünya'nın farklı bölgelerinde yaşayan insanların deri renginin farklı olması gibi birçok değişik biyolojik adaptasyonun altında yatan neden, enleme göre farklılık gösteren morötesi ışık miktarıdır.

Hinode'un Güneş Optik Teleskobuyla 12 Ocak 2007 tarihinde çekilen bu Güneş görselinde değişik manyetik polariteye sahip olan bölgeleri bağlayan plazmanın ipliksi yapısı görünmektedir.
Hinode'un Güneş Optik Teleskobuyla 12 Ocak 2007 tarihinde çekilen bu Güneş görselinde değişik manyetik polariteye sahip olan bölgeleri bağlayan plazmanın ipliksi yapısı görünmektedir.
Dünya'dan gözlemlendiğinde Güneş'in gökyüzünde izlediği yol yıl boyunca değişir. Her gün aynı zamanda bakıldığında Güneş'in bir yıl boyunca izlediği yola günizi (analemma) denir ve kuzey/güney ekseni boyunca duran bir 8 şekline benzer. Güneş'in görünen konumunda en önemli farklılık Dünya'nın Güneş'e göre 23,5 derecelik eğikliğinden kaynaklanan 47 derecenin üzerinde kuzey/güney salınımıdır. Ancak bir doğu/batı salınımı da vardır. Doğu/batı salınımının nedeni günberiye gelirken Dünya'nın ivmesinin artması ve uzaklaşıp günöteye giderken hızının düşmesidir. Güneş'in görünen konumunun kuzey/güney salınımı, Dünya üzerinde mevsimlerin oluşumunun ana nedenidir.

Güneş manyetik olarak etkin bir yıldızdır. Güçlü, yıldan yıla değişen ve her on bir yılda bir, güneş maksimumu civarında yön değiştiren bir manyetik alanı destekler. Güneş yüzeyinde güneş lekeleri, güneş püskürtüsü, Güneş Sistemi boyunca madde taşıyan güneş rüzgârının değişiklikleri gibi birçok güneş etkinliğinin arkasında bu manyetik alan bulunur. Güneş etkinliklerinin yeryüzündeki etkileri orta ve yüksek enlemlerde görülen kutup ışıkları ile radyo haberleşmesi ve elektrik hatlarında oluşan kesintilerdir. Güneş etkinliğinin Güneş Sistemi'nin oluşumunda önemli rol aldığı düşünülmektedir. Güneş etkinliği Dünya'nın dış atmosfer tabakasının yapısını değişikliğe uğratır.

Dünya'ya en yakın yıldız olan Güneş, biliminsanları tarafından oldukça kapsamlı olarak araştırılmış olsa da hâlâ birçok sorunun cevabı bulunamamıştır. Günümüzde Güneş ile ilgili en önemli araştırma konuları arasında güneş lekelerinin düzenli devri, güneş püskürtülerinin kaynağı ve fiziği, kromosfer ile korona arasında manyetik etkileşim ve güneş rüzgârının kaynağı bulunmaktadır.


Hinode'un Güneş Optik Teleskobuyla 12 Ocak 2007 tarihinde çekilen bu Güneş görselinde değişik manyetik polariteye sahip olan bölgeleri bağlayan plazmanın ipliksi yapısı görünmektedir.

Yaşam çevrimi

Güneş'in yıldız gelişimi bilgisayar modellemesi ve nükleokozmokronoloji yöntemleri kullanılarak ana dizi üzerinde hesaplanan yaşının 4,57 milyar yıl olduğu düşünülmektedir.

Hidrojen moleküler bulutun hızla kendi içine çökmesi sonucu üçüncü nesil, Öbek I, T Tauri yıldızı olan Güneş'in doğduğu düşünülmektedir. Bu doğan yıldızın Samanyolu gökadasının çekirdeğinden 26.000 ışıkyılı uzakta hemen hemen dairesel bir yörüngeye girdiği varsayılmaktadır.

Yıldız ana dizi üzerinde yıldız evrimi aşamasının yarı yolundadır. Bu aşamada çekirdekte oluşan nükleer füzyon reaksiyonları hidrojeni helyuma dönüştürür. Her saniye Güneş'in çekirdeğinde 4 milyon ton madde enerjiye çevrilir ve ortaya nötrinolarla radyasyon çıkar. Bu hızla günümüze kadar 100 Dünya kütlesi kadar madde enerjiye çevrilmiştir. Güneş yaklaşık olarak 10 milyar yıl ana dizi yıldızı olarak yaşamına devam edecektir.

Güneş süpernova olarak patlayacak kadar fazla kütleye sahip değildir. Bunun yerine 5-6 milyar yıl içinde kırmızı dev aşamasına girecektir. Çekirdekte bulunan hidrojen yakıtı tükendikçe dış katmanları genişleyecek, çekirdeği büzüşerek ısınacaktır. Çekirdek ısısı 100 MK civarına ulaştığında helyum füzyonu tetiklenecek ve karbon ile oksijen üretmeye başlayacaktır. Böylece 7,8 milyar yıl içinde gezegen bulutsu aşamasının asimptotik dev koluna girerek iç sıcaklığında oluşan kararsızlıklar nedeniyle yüzeyinden kütle kaybetmeye başlayacaktır. Güneş'in dış katmanlarının genişleyerek Dünya'nın yörüngesinin bulunduğu noktaya kadar gelmesi olasıdır ancak son zamanlarda yapılan araştırmalar, Güneş'ten kırmızı dev aşamasının başlarında kaybolan kütle nedeniyle Dünya'nın yörüngesinin daha uzaklaşacağını, dolayısıyla da Güneş'in dış katmanları tarafından yutulmayacağını önermektedir. Ancak Dünya'nın üstündeki suyun tamamı kaynayacak ve atmosferinin çoğu uzaya kaçacaktır. Bu dönemde oluşan güneş sıcaklıklarının sonucunda 900 milyon yıl sonra Dünya yüzeyi bildiğimiz yaşamı destekleyemeyecek kadar ısınacaktır. Bir kaç milyar yıl sonra da yüzeyde bulunan su tamamen yok olacaktır.

Kırmızı dev aşamasının ardından yoğun termal titreşimler Güneş'in dış katmanlarından kurtularak bir gezegensel bulutsu oluşturmasına neden olacaktır. Geride kalan tek cisim aşırı derecede sıcak olan yıldız çekirdeği olacaktır. Bu çekirdek milyarlarca yıl boyunca yavaş yavaş soğuyup beyaz cüce olarak yok olacaktır. Bu yıldız evrimi senaryosu düşük ve orta kütleli yıldızların tipik gelişim senaryosudur.

Güneşin Yapısı




Güneş bir sarı cücedir. Güneş Sistemi'nin toplam kütlesinin yaklaşık % 99'unu oluşturur. Güneş hemen hemen mükemmel bir küre şeklindedir, basıklığı yalnızca 9 milyonda birdir, yani kutuplararası çapı ile ekvator çapı arasında bulunan fark yalnızca 10 km.'dir. Güneş plazma hâlindedir ve katı değildir; dolayısıyla kendi ekseni etrafında dönerken kademeli olarak döner, yani ekvatorda kutuplarda olduğundan daha hızlı döner. Bu gerçek dönüşün periyodu ekvatorda 25 gün, kutuplarda 35 gündür. Ancak Dünya Güneş'in etrafında dönerken gözlem noktamız sürekli değiştiği için Güneş'in görünür dönüşü ekvatorda yaklaşık 28 gün kadardır. Bu yavaş dönüşün merkezkaç etkisi Güneş'in ekvatorunda yüzey çekiminden 18 milyon kat daha güçsüzdür. Aynı zamanda gezegenlerden kaynaklanan gelgit etkisi Güneş'in şeklini belirgin derecede etkilemez.

Kayalık gezegenlerde olduğu gibi Güneş'in belirli sınırları yoktur. Dış katmanlarında, merkezinden uzaklaştıkça gaz yoğunluğu üstel olarak azalır. Ancak aşağıda açıklandığı gibi Güneş'in belirgin bir iç yapısı bulunur. Güneş'in yarıçapı merkezinden ışıkyuvarının (fotosfer) kenarına kadar ölçülür. Bu hemen yukarısında gazların önemli miktarda ışık saçamayacak kadar çok soğuk ya da çok ince olduğu katmandır. Işık yuvarı çıplak gözle görülen yüzeydir. Güneş çekirdeği toplam hacminin yüzde 10'una ama toplam kütlesinin yüzde 40'ına sahiptir.

Güneş'in içi doğrudan gözlemlenemez ve Güneş elektromanyetik ışımaya karşı opaktır. Ancak nasıl sismoloji deprem tarafından üretilen dalgaları kullanarak Dünya'nın iç yapısını ortaya çıkarıyorsa helyosismoloji de Güneş'in içinden geçen basınç dalgalarını kullanarak iç yapısını ölçmeye ve görüntülemeye çalışır. Güneş'in bilgisayar modellemesi de iç katmanları araştırmak amacıyla kuramsal bir araç olarak kullanılır.

Çekirdek

Güneş çekirdeği merkezden 0,2 güneş yarıçapına kadar uzanır. Yoğunluğu 150.000 kg/m³ (Yeryüzünde suyun yoğunluğunun 150 katı) civarında, sıcaklığı da 13.600.000 kelvin kadardır (yüzey sıcaklığı yaklaşık 5.800 kelvindir). Yakın zamandaki SOHO (Solar and Heliospheric Observatory) misyonunun getirdiği bilgiler çekirdekte işınsal bölgeye doğru daha hızlı bir dönme hızı olduğunu belirtmektedir. Güneş'in yaşamının çoğunda enerji, proton-proton zincirleme tepkimesi diye adlandırılan aşamalardan oluşan ve hidrojeni helyuma çeviren nükleer füzyon ile oluşur. Çekirdek, füzyon ile önemli derecede ısı oluşturulan tek yerdir. Yıldızın geri kalanı çekirdekten dışarıya doğru transfer edilen enerjiyle ısınır. Çekirdekte füzyonla oluşan tüm enerji arka arkaya gelen katmanlardan geçerek güneş ışıkyuvarına ulaşır ve buradan uzaya günışığı ve parçacıkların kinetik enerjisi olarak yayılır.

Güneş'te serbest olarak bulunan toplam ~8.9{{e|56}} proton (hidrojen çekirdeği) her saniye 3,4{{e|38}} kadarı helyum çekirdeğine dönüşür, saniyede 4,26 milyon ton madde-enerji dönüşüm oranıyla saniyede 383 yotta watt (3,83{{e|26}} W) ya da 9,15{{e|10}} megaton TNT enerji açığa çıkar. Bu aslında güneş çekirdeğinde 0,3 µW/cm³ ya da 6 µW/kg madde gibi oldukça düşük bir enerji üretimi oranına karşılık gelir. Örneğin insan vücudu yaklaşık olarak 1,2 W/kg ısı üretir, yani bu da Güneş'in birim kütle başına milyonlarca katı demektir. Dünya üzerinde benzer parametreler kullanılarak plazma ile enerji üretilmesi tamamen mantıksız olacaktır çünkü orta kapasitede 1 GW'lık bir füzyon güç santralı bir küp mil hacminde 170 milyar tonluk plazmaya ihtiyaç duyacaktır. Dolayısıyla yeryüzünde bulunan füzyon reaktörleri, Güneş'in içindekinden çok daha yüksek plazma sıcaklıkları kullanmaktadır.

Nükleer füzyon hızı, yoğunluk ve sıcaklığa çok yakından bağlıdır, dolayısıyla çekirdekteki füzyon hızı kendi kendini düzenleyen bir dengeye sahiptir. Biraz yüksek bir füzyon hızı sonucunda çekirdek ısınarak dış katmanlara doğru hafifçe genişleyecek, füzyon hızını azaltacak ve kendini düzenleyecektir. Biraz düşük bir füzyon hızı da çekirdeğin soğumasına ve daralmasına dolayısyla da füzyon hızının artmasına neden olacaktır.

Nükleer füzyon tepkimeleri sonucunda açığa çıkan yüksek enerjili fotonlar (kozmik, gama ve X ışınları) güneş plazmasının yalnızca birkaç milimetresi tarafında emilir ve tekrar rastgele yönlerde çok az enerji kaybederek tekrar yayılır, bu nedenle de ışımanın Güneş'in yüzeyine ulaşması uzun zaman alır. "Foton yolculuk zamanı" 10.000 ilâ 170.000 yıl kadar sürer.

Isıyayımsal dış katmandan şeffaf "yüzey" ışıkyuvara doğru son bir yolculuktan sonra fotonlar görünür ışık olarak kaçar. Güneş'in merkezinde bulunan her gama ışını uzaya kaçmadan önce bir kaç milyon görünür ışık fotonuna dönüşür. Nötrinolar da çekirdekteki tepkimelerde oluşur ama fotonların aksine nadiren madde ile etkileşime girer, dolayısıyla hemen hemen hepsi Güneş'ten hemen kaçabilir. Çok uzun yıllar, Güneş'te üretilen nötrinoların ölçümü kuramlar sonucu tahmin edilenden 3 kat daha düşüktü. Bu tutarsızlık yakın zamanda nötrino salınım etkilerinin keşfiyle çözüldü. Güneş gerçekten de kuramlarca önerilen miktarda nötrinoyu açığa çıkarmakta ancak nötrino algılayıcıları bunların üçte ikisini kaçırmaktadır çünkü nötrinolar kuantum sayılarını değiştirmektedir.

Işınsal bölge

Yaklaşık 0,2 güneş yarıçapından 0,7 güneş yarıçapına kadar bulunan madde, çekirdekteki yoğun ısıyı dışarı doğru temal radyasyonla taşıyacak kadar sıcak ve yoğundur. Bu bölgede ısıyayım yoktur, yükseklik arttıkça madde soğusa da sıcaklık düşümü adyabatik sapma oranından düşük olduğu için ısıyayım oluşamaz. Isı ışınım yoluyla iletilir. Hidrojen ve helyum iyonları foton açığa çıkarır. Fotonlar diğer iyonlar tarafından emilmeden bir miktar yol alır. Bu şekilde enerji dışarı doğru çok yavaş bir hızla ilerler.

Işınsal ile ısıyayımsal bölge arasında "tachocline" adı verilen bir geçiş katmanı bulunur. Burada ışınsal bölgenin tekdüze dönüşüyle ısıyayımsal bölgenin kademeli dönüşü arasında oluşan ani değişiklik büyük bir kırılmaya neden olur.

Isıyayımsal bölge

Güneş'in dış katmanında, yani yarıçapının % 70 aşağısına kadar olan bölgede plazma ısıyı dışarıya doğru ışıma yoluyla iletecek kadar yoğun ve sıcak değildir. Sonuç olarak sıcak sütunların yüzeye yani ışıkyuvara doğru madde taşıdığı ısıyayım oluşur. Yüzeye çıkan madde soğuyunca tekrar ısıyayımsal bölgenin başladığı yere çökerek ışınsal bölgenin üst kısmından daha fazla ısı alır.

Isıyayımsal bölgede bulunan termal sütunlar Güneş'in yüzeyinde belirli bir iz bırakır. Güneş'in iç bölgesinin dış katmanı olan bu bölgedeki türbülanslı ısıyayım küçük ölçekli bir dinamo yaratarak Güneş'in yüzeyinin tamamında manyetik kuzey ve güney kutuplar yaratır.

Işıkyuvar

Işıkyuvar, Güneş'in görünen yüzeyi, hemen altında görünen ışığa opak olduğu katmandır. Işıkyuvarın üzerinde görünen günışığı uzaya serbestçe yayılır ve enerjisi Güneş'ten uzaklaşır. Opaklıkta olan değişiklik görünen ışığı kolayca soğuran H- iyonlarının miktarlarının azalmasıdır. Buna karşın görünen ışık elektronların hidrojen atomlarıyla H- iyonu oluşturmak için tepkimeye girmesiyle oluşur. Işıkyuvar on ile yüz kilometre arasındaki kalınlığıyla Dünya üzerinde bulunan havadan daha az opaktır. Işıkyuvarın üst kısmının alt kısmından soğuk olması nedeniyle Güneş ortada kenarlara nazaran daha parlakmış gibi görünür. Güneş'in kara cisim ışınımı 6.000 K sıcaklığında olduğunu gösterir. Işıkyuvarın parçacık yoğunluğu yaklaşık 1023 m−3'dir bu da Dünya havayuvarının deniz düzeyindeki parçacık yoğunluğunun % 1'i kadardır.

Işıkyuvarın ilk optik tayf incelemeleri sırasında bazı soğurma çizgilerinin o zamanlar Dünya üzerinde bilinen hiçbir elemente ait olmadığı anlaşıldı. 1868 yılında Norman Lockyer bunun yeni bir elemente ait olduğu varsayımını öne sürdü ve adını Yunan güneş tanrısı Helios'tan esinlenerek " helyum" koydu. Bundan ancak 25 yıl sonra helyum yeryüzünde izole edilebildi.
 
Üst Alt